

Corrigé 1

exercice 1

Le plan complexe est muni d'un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$. Dans ce qui suit, z désigne un nombre complexe.

Pour chacune des affirmations ci-dessous, indiquer sur la copie si elle est vraie ou si elle est fausse. Justifier.

1. Affirmation 1: L'équation z - i = i(z + 1) a pour solution $\sqrt{2}e^{i\frac{\pi}{4}}$.

Réponse :

$$z - i = i(z + 1) \Leftrightarrow z - iz = i + i$$

$$\Leftrightarrow z(1 - i) = i + i$$

$$\Leftrightarrow z\sqrt{2} \left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = 2e^{i\frac{\pi}{2}}$$

$$\Leftrightarrow z\sqrt{2}e^{i\frac{-\pi}{4}} = 2e^{i\frac{\pi}{2}}$$

$$\Leftrightarrow z = \sqrt{2}e^{i(\frac{\pi}{2} + \frac{\pi}{4})}$$

$$\Leftrightarrow z = \sqrt{2}e^{i(3\frac{\pi}{4})}$$

On a $\sqrt{2}e^{i\left(3\frac{\pi}{4}\right)}\neq\sqrt{2}e^{i\frac{\pi}{4}}$ car il s'agit de deux formes exponentielles distinctes.

L'affirmation 1 est donc fausse.

2. Affirmation **2**: Pour tout réel $x \in \left] -\frac{\pi}{2} \right]$, le nombre complexe $1 + e^{2ix}$ admet pour forme exponentielle $2\cos xe^{-ix}$.

Réponse :

Pour tout réel
$$x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$
,

$$1 + e^{2ix} = e^{ix} (e^{-ix} + e^{ix})$$

On a utilisé la relation $e^{ix} \times e^{-ix} = |e^{ix}| = 1$

$$1 + e^{2ix} = e^{ix} (\cos(-x) + i\sin(-x) + \cos(x) + i\sin(x))$$

$$1 + e^{2ix} = e^{ix} (\cos(x) - i\sin(x) + \cos(x) + i\sin(x))$$

$$1 + e^{2ix} = 2\cos(x)e^{ix}$$

 $2\cos xe^{ix}$ est une forme exponentielle si $2\cos x \ge 0$.

Ceci est vrai car $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.

Néanmoins, on n'a pas $2\cos x e^{-ix}$ mais $2\cos(x)e^{ix}$, ces deux expressions sont différentes, pour la valeur $\frac{\pi}{3}$ par exemple car $e^{-i\frac{\pi}{3}} \neq e^{i\frac{\pi}{3}}$ (à vérifier sur les formes algébriques)

L'affirmation 2 est donc fausse

3. Affirmation 3 : Un point M d'affixe z tel que |z-i|=|z+1| appartient à la droite d'équation y=-x.

Réponse:

Notons A le point d'affixe i et et B le point d'affixe -1.

Notons Γ l'ensemble des points M d'affixe z tel que |z-i|=|z+1|.

M appartient à Γ si et seulement si $|z-z_A|=|z-z_B|$. M appartient à Γ si et seulement si MA=MB.

 Γ est donc la médiatrice du segment [AB].

 Γ médiatrice du segment [AB] est la perpendiculaire à [AB] en son milieu I.

Un vecteur normal à la droite Γ est \overrightarrow{AB} d'affixe $z_B - z_A = -1 - i$ donc de coordonnées (-1; -1).

Une équation de Γ est donc de la forme -x-y+c=0

Le milieu *I* de [*AB*] a pour affixe $\frac{z_A + z_B}{2} = \frac{-1 + i}{2}$ donc pour coordonnées (-0,5;0,5).

On en déduit que $-(-0,5)-0,5+c=0 \Leftrightarrow c=0$

Une équation de Γ est donc $-x-y=0 \Leftrightarrow y=-x$.

L'affirmation 3 est donc vraie

- **4.** On considère le nombre complexe $z = 1 + i\sqrt{3}$.
 - a. Affirmation 4 : Le nombre complexe z^2 est un réel positif.

Réponse :

$$z = 1 + i\sqrt{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{\pi}{3}}$$

On en déduit que $z^2 = 2^2 e^{i\frac{2\pi}{3}} = 4\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$.

L'affirmation 4 est donc fausse

b. Affirmation 5 : L'argument du nombre complexe $z^{2\ 019}$ vaut 0 modulo 2π .

Réponse :

$$\arg(z^{2 \text{ 019}}) = 2019\arg(z) = 2019 \times \frac{2\pi}{3} = 1346\pi = 2 \times 673\pi.$$

On en déduit que l'argument du nombre complexe $z^{2\ 019}$ vaut 0 modulo 2π .

L'affirmation 5 est donc vraie.

Corrigé 2

exercice 5, correction de l'AMEP

Soit la suite de nombres complexes (z_n) définie par $\begin{cases} z_0 = 100 \\ z_{n+1} = \frac{i}{3}z_n \text{ pour tout entier naturel } n. \end{cases}$

Le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Pour tout entier naturel n, on note M_n le point d'affixe z_n .

1. Pour tout entier naturel n, les points M_n et M_{n+2} ont pour affixes z_n et z_{n+2} .

$$z_{n+2} = \frac{i}{3}z_{n+1} = \frac{i}{3}\left(\frac{i}{3}z_n\right) = \frac{i^2}{9}z_n = -\frac{1}{9}z_n$$

Le vecteur $\overrightarrow{OM_{n+2}}$ a pour affixe z_{n+2} et le vecteur $\overrightarrow{OM_n}$ a pour affixe z_n ; or $z_{n+2} = -\frac{1}{9}z_n$ donc $\overrightarrow{OM_{n+2}} = -\frac{1}{9}\overrightarrow{OM_n}$. Les vecteurs $\overrightarrow{OM_{n+2}}$ et $\overrightarrow{OM_n}$ sont colinéaires donc les points O, M_n et M_{n+2} sont alignés quel que soit n.

2. On rappelle qu'un disque de centre A et de rayon r, où r est un nombre réel positif, est l'ensemble des points M du plan tels que $AM \le r$.

Le point M_n appartient au disque de centre O et de rayon 1 si et seulement si $OM_n \le 1$. On sait que $OM_n = |z_n|$.

Soit (d_n) la suite définie pour tout n par $d_n = |z_n|$.

Pour tout entier naturel n, on a $z_{n+1} = \frac{\mathrm{i}}{3}z_n$ donc $|z_{n+1}| = \left|\frac{\mathrm{i}}{3}z_n\right| = \left|\frac{\mathrm{i}}{3}\right| \times |z_n| = \frac{1}{3}|z_n|$; donc, $d_{n+1} = \frac{1}{3}d_n$.

De plus, $d_0 = |z_0| = 100$.

La suite (d_n) est définie par $d_0 = 100$ et $d_{n+1} = \frac{1}{3}d_n$, pour tout entier naturel n.

Donc la suite (d_n) est une suite géométrique de premier terme $d_0 = 100$ et de raison $q = \frac{1}{3}$.

- -1 < q < 1 donc la suite (d_n) est convergente et a pour limite 0. D'après la définition de la limite d'une suite, on peut déduire que l'intervalle [0; 1] contient tous les termes de la suite à partir d'un certain rang, ce qui répond à la question.
- On peut également déterminer le rang n à partir duquel tous les points sont situés dans le disque (mais ce n'était pas explicitement demandé).

On cherche n tel que $d_n < 1$. La suite (d_n) est géométrique de premier terme $d_0 = 100$ et de raison $q = \frac{1}{3}$ donc, pour tout n, $d_n = d_0 \times q^n$ donc $d_n = 100 \left(\frac{1}{3}\right)^n$.

On résout l'inéquation :

$$d_n < 1 \iff 100 \left(\frac{1}{3}\right)^n < 1 \iff \left(\frac{1}{3}\right)^n < 0,01 \iff \ln\left(\left(\frac{1}{3}\right)^n\right) < \ln(0,01) \iff n \times \ln\left(\frac{1}{3}\right) < \ln(0,01)$$
$$\iff n > \frac{\ln(0,01)}{\ln\left(\frac{1}{3}\right)}$$

Or $\frac{\ln(0,01)}{\ln(\frac{1}{3})} \approx 4,2$ donc les points M_n appartiennent au disque de centre O et de rayon 1 à partir de n=5.

Corrigé 3

Exercice 8, Centres-Etrangers juin 2014

On définit, pour tout entier naturel n, les nombres complexes z_n par :

$$\begin{cases} z_0 = 16 \\ z_{n+1} = \frac{1+i}{2} z_n, \text{ pour tout entier naturel } n. \end{cases}$$

On note r_n le module du nombre complexe $z_n : r_n = |z_n|$.

Dans le plan muni d'un repère orthonormé direct d'origine O, on considère les points A_n d'affixes z_n .

1. **a.**
$$z_1 = \frac{1+i}{2}z_0 = \frac{1+i}{2} \times 16 = 8+8i.$$

 $z_2 = \frac{1+i}{2}z_1 = \left(\frac{1+i}{2}\right)(8+8i) = 4+4i+4i-4=8i.$
 $z_3 = \frac{1+i}{2}z_2 = 8i\left(\frac{1+i}{2}\right) = 4i-4=-4+4i.$

b. Voir l'annexe.

c. Si
$$z = \frac{1+i}{2}$$
 alors $|z|^2 = \frac{1}{4} + \frac{1}{4} = \frac{2}{4}$, donc $|z| = \frac{\sqrt{2}}{2}$.

Donc
$$z = \frac{\sqrt{2}}{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \frac{\sqrt{2}}{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$

Un argument de $\frac{1+i}{2}$ est donc $\frac{\pi}{4}$.

d.
$$OA_0 = ||z_0| = r_0 = 16$$
;

$$OA_1 = ||z_1| = r_1 = \sqrt{8^2 + 8^2} = \sqrt{64 \times 2} = 8\sqrt{2};$$

$$A_0 A_1 = |z_1 - z_0| = |8 + 8i - 16| = |-8 + 8i| = 8\sqrt{2}$$

On a donc $OA_1 = A_0A_1$: le triangle est isocèle en A_1 ;

D'autre part $\left(8\sqrt{2}\right)^2 + \left(8\sqrt{2}\right)^2 = 16^2 \iff A_0A_1^2 + OA_1^2 = OA_0^2$ signifie (réciproque du théorème de Pythagore) que le triangle OA_0A_1 est rectangle en A_1 .

2.
$$r_{n+1} = |z_{n+1}| = \left|\frac{1+\mathrm{i}}{2}z_n\right| = \left|\frac{1+\mathrm{i}}{2}\right| \times |z_n|$$
 (le module du produit est égal au produit des modules) $=\frac{\sqrt{2}}{2}r_n$.

$$r_{n+1} = \frac{\sqrt{2}}{2} r_n$$
 montre que la suite (r_n) est géométrique, de raison $\frac{\sqrt{2}}{2}$.

On sait que
$$r_n r_0 \left(\frac{\sqrt{2}}{2}\right)^n = 16 \left(\frac{\sqrt{2}}{2}\right)^n$$
.

Comme
$$0 < \frac{\sqrt{2}}{2} < 1$$
, on sait que $\lim_{n \to +\infty} \left(\frac{\sqrt{2}}{2}\right)^n = 0$, donc $\lim_{n \to +\infty} r_n = 0$.

La suite converge vers 0.

Comme $r_n = |z_n| = \mathrm{O}A_n$, ceci signifie géométriquement que la limite des points A_n est le point O.

3. a. Quel que soit le naturel n:

$$A_n A_{n+1} = |z_{n+1} - z_n| = \left| \frac{1+\mathrm{i}}{2} z_n - z_n \right| = \left| z_n \left(\frac{1+\mathrm{i}}{2} - 1 \right) \right| = \left| z_n \left(\frac{-1+\mathrm{i}}{2} \right) \right| = \left| \frac{-1+\mathrm{i}}{2} \right| \times |z_n| = \frac{\sqrt{2}}{2} r_n = r_{n+1}.$$

b. L_n est donc la somme des n (sauf r_0) premiers termes de la suite géométrique (r_n) .

Donc
$$L_n = 8\sqrt{2} \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^n}{1 - \frac{\sqrt{2}}{2}}.$$

c. On sait que
$$\lim_{n \to +\infty} \left(\frac{\sqrt{2}}{2}\right)^n = 0$$
, donc $\lim_{n \to +\infty} L_n = \frac{8\sqrt{2}}{1 - \frac{\sqrt{2}}{2}} = \frac{16\sqrt{2}}{2 - \sqrt{2}} = \frac{16\sqrt{2}}{\sqrt{2}(\sqrt{2} - 1)} = \frac{16}{\sqrt{2} - 1} = \frac{16\left(\sqrt{2} + 1\right)}{2 - 1} = \frac{16\left(\sqrt{2} +$